
Stopping a Rapid Tornado with a Puff
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Abstract—RaptorQ is the most advanced fountain code pro-
posed so far. Its properties make it attractive for forward error
correction (FEC), offering high reliability at low overheads (i.e.,
for a small amount of repair information) and efficient encoding
and decoding operations. Since RaptorQ’s emergence, it has al-
ready been standardized by the IETF, and there is the expectation
that it will be adopted by several other standardization bodies,
in areas related to digital media broadcast, cellular networks,
and satellite communications. The paper describes a new attack
on RaptorQ that breaks the near ideal FEC performance, by
carefully choosing which packets are allowed to reach the receiver.
Furthermore, the attack was extended to be performed over
secure channels with IPsec/ESP. The paper also proposes a few
solutions to protect the code from the attack, which could be
easily integrated into the implementations.

I. INTRODUCTION

Forward error correction (FEC) is a technique for the
recovery of errors in data disseminated over unreliable or
noisy communication channels [1]. The central idea is that the
sender encodes the message in a redundant way by applying
an error-correcting code, which allows the receiver to repair
the errors. An erasure code is a FEC code with the capability
to recuperate from losses in the communications. The data is
divided into K source symbols, which are transformed in a
larger number of N encoding symbols such that the original
data can be retrieved from a subset of the encoding symbols.
An immediate benefit of this approach is that the receiver
gains the ability to amend the errors without needing a reverse
channel to request the retransmission of data, at the cost of
a fixed higher bandwidth forward channel. FEC is therefore
applied in situations where retransmissions are costly, such
as when broadcasting data to multiple destinations, or when
communication links are one-way.

Fountain codes are a class of erasure codes with two
attractive properties: an arbitrary number of encoding symbols
can be produced on the fly, simplifying the adaptation to
varying loss rates; and the data can be reconstructed with
high probability from any subset of the encoding symbols
(of size equal to or slightly larger than the number of source
symbols) [1], [2]. A typical use case scenario for fountain
codes appears when a single source multicasts a file to many
destinations. In such a scenario, resorting to TCP channels
would not be scalable because the sender needs to keep
track of which packets arrive at each receiver. Multicasting
with UDP would solve this limitation, but would lack the
reliability offered by TCP. Coding the file with a fountain
code and disseminating over UDP addresses both problems –
each receiver would be able to recover the (different) erasures
affecting its own channel, without the need for retransmissions.

Raptor (or Rapid Tornado) codes [3] are the closest solu-
tion to an ideal digital fountain code. They achieve constant

per-symbol encoding/decoding cost with a near-zero overhead.
Two versions of Raptor codes have been standardized by
the Internet Engineering Task Force (IETF), called R10 [4]
and RaptorQ [5]. R10 appeared first, and has been adopted
in a number of different standards [6]–[16], covering areas
related to the transmission of data over cellular networks,
satellite communications, IPTV and digital video broadcasting.
RaptorQ is the most recent Raptor code, and it provides
greatly enhanced reliability as well as efficient encoding and
decoding functions. RaptorQ has been standardized in RFC
6330 [5] and other standards will probably adopt it as well.
Its applications are various, and include military operations
and communication with intermittent transmissions and/or with
high loss rates [17]. To the best of our knowledge, Qualcomm’s
closed and commercial solution1 is the only one currently
available to the public. However, this may change in the future
as RaptorQ could obsolete R10 [18].

RaptorQ was designed for benign environments where
erasures occur independently and randomly. In such an en-
vironment, the code’s reliability is excellent.

“... RaptorQ codes offer close to optimal protection
against arbitrary packet losses at a low computa-
tional complexity.” [19]

“If the decoder receives K’+2 encoding symbols
<...> then on average the decoder will fail to
recover the entire source block at most 1 out of
1,000,000 times.” [5]

This paper investigates to what extent a malicious adversary
may affect RaptorQ’s reliability. This is justified not only
because of the anticipated utilization of the code in several
communication standards, but also due to the large number
of application areas that are envisioned. We show that it is
possible to hinder the decoding process with little effort, thus
preventing the reconstruction of the original data.

Some RFCs about FEC utilization in IP networks [20],
and also the description of RaptorQ [5], already discuss a
few security implications of the codes. These considerations
address common attacks like the access to confidential data and
the corruption of the communication flows (e.g., by modifying
the content of the packets). As stated, FEC protection does not
offer any kind of security. However, all previously considered
attacks can be prevented with encryption, source authentication
and integrity checks. IPsec/ESP [21] paired with checking the
integrity of the decoded data is thus one of the recommended
solutions that could secure the flows.

In this paper, we study a novel approach to attack RaptorQ,
which is directed at the standard’s own design and is indepen-

1http://www.qualcomm.com/solutions/multimedia/media-delivery/raptorq



dent of the data being propagated. The idea is to create erasures
in the network that (1) will allow the decoding operation to
be performed but (2) with an unsuccessful outcome (i.e, with
a decoding failure). Since RaptorQ is highly robust, if this
activity is carried out in a random way then the probability
of a successful attack would be extremely small. Thus, to
ensure that decoding always fails, we had to exploit some of
the operations defined in the RFC, such as the deterministic
identification of encoding symbols (i.e., the packets) paired
with the pseudo-randomness of the inner (LT) code. This way
we could predict the format of the decoding matrix (a system of
linear equations) and force the injection of linear dependencies
that stopped the recovery of packet losses.

Under regular conditions, in order to execute the attack,
an adversary needs to have access to the flow of packets
between the source and the destination(s) and the capability
to drop/forward packets accordingly to a pre-computed erasure
pattern. Given a sequence of packets produced by a transmitter,
the erasure pattern defines which packets may go through
and which must be eliminated. Therefore, the attack can be
executed with minimal packet delay, ideally at line-speed.
We will explain how a TFTP application using RaptorQ
in its communication can be precluded from reconstructing
the whole file at a server. Note that TFTP was chosen just
for the demonstration of the attack’s practicality. The attack
mechanisms hold for the wide range of uses of RaptorQ.

In some cases, when one can guess the configuration
parameters of RaptorQ by looking at the flow of packets (e.g.,
the time intervals between them), the attack can be extended
to encrypted channels. Later in the paper we will analyze
what are the necessary conditions to carry out such attacks
and also discuss prevention options. In order to explore the
feasibility of the attack on encrypted RaptorQ transmissions,
we explain how it could be successfully carried out in the
TFTP application running on top of IPsec/ESP.

Surprisingly, for many of the configurations of RaptorQ,
we could discover erasure patterns where only a few packets
have to be deleted to stop effective decoding (as shown later
in Table II). This means that the attack can be made stealthy
as receivers experience a loss rate with a magnitude within
the range of typical networks. The main observable difference
is that these losses happen to have a much higher impact
– the decoder is unsuccessful. In other words, RaptorQ is
stopped from fulfilling its mission of providing protection
against erasures with very high probability, even though it is
allowed to execute under the expected conditions.

The remainder of the paper is organized as follows: Sec-
tion II gives some background information. The RaptorQ
standard is explained in more detail in Section III. Section IV
describes our attack on IETF’s RFC 6330 [5] and the impact
it can have on the code’s reliability. Next, two experiments
are performed on how to disrupt the execution of TFTP appli-
cation, first with clear channels and later on with IPsec/ESP.
Finally, in Section VII, we briefly discuss how the attack could
be extended to the R10 code, and explain potential solutions
that could be employed to protect the RaptorQ standard.

II. BACKGROUND

A. Related Work

Some investigation has been performed on malicious
packet dropping and on its detection. For instance, Zang et
al. observed that selectively eliminating a few packets in a
TCP connection may severely damage performance [22], and
a statistical module was proposed to detect this sort of attacks.
Bradley et al. describe a solution for the discovery and reaction
to routers that drop or misroute packets [23]. A distributed
probing technique to detect and mitigate malicious packet
dropping in wireless ad hoc networks was discussed in [24].
Our work differs from previous research because it targets
the FEC code that is used to protect from erasures. In many
cases just one or two packets need to be dropped to prevent
the recovery of the original data, making it extremely hard to
detect only from a network perspective.

We presented a preliminary version of this work in [25].
This version contributes a refined attack, a significantly ex-
tended discussion and countermeasure suggestions.

B. Fountain Codes

Fountain codes (a.k.a. rateless erasure codes) [1], [2] are
capable of reconstructing the original data even if some of
the transmitted packets (carrying the encoding symbols) are
lost in the network. They have the property that a potentially
limitless sequence of encoding symbols can be generated from
the original data (i.e., the source symbols). They also have the
characteristic that the original data can be rebuilt with high
probability from any subset of the encoding symbols of size
larger than or equal to the number of source symbols. The
name rateless refers to the fact that these codes do not exhibit
a fixed code rate. The code rate (or information rate [26]) of
a FEC code is the proportion of the data-stream that is useful
(non-redundant). That is, if the code rate is k/n, for every k
bits of useful information, the encoder generates totally n bits
of data, of which n− k are redundant.

Reed-Solomon codes [27] can be seen as a first example of
fountain-like codes because data is partitioned into K source
symbols and recovery can occur with any K encoding symbols.
These codes require however a quadratic decoding time and
are limited to small block lengths. Low-density parity-check
(LDPC) codes [28] come closer to the fountain code ideal.
Nevertheless, early LDPC codes were restricted to fixed-degree
regular graphs, requiring significantly more than K encoding
symbols to correctly decode the propagated signal. Tornado
codes [29], although they do approach Shannon capacity [30]
with linear decoding complexity, are block codes and hence not
rateless. Luby Transform (LT) codes [31] are considered the
first practical rateless codes for the Binary Erasure Channel
(BEC). The encoding and decoding algorithms of LT codes
are conceptually simple – they are similar to a parity-check
process.

Raptor codes [3], [32] were developed as a way to reduce
the decoding cost to O(1) by preprocessing the LT code with
a standard erasure block code (e.g., Tornado code). When
designed properly, a Raptor code can achieve constant per-
symbol encoding/decoding cost with an overhead close to zero.
At the time of this writing, this class of codes has been shown
to be the closest to the ideal universal digital fountain.
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Fig. 1. Overview of data dissemination with the RaptorQ FEC.

C. Data dissemination with a RaptorQ FEC

RaptorQ is able to recover from the loss of packets that may
occur anywhere between the sender and the receiver nodes.
This covers problems in routers that have to drop packets
due to excessive load or data corruptions that are detected
using a checksum (causing the packet to be discarded). This
sort of capability can be helpful in file multicasting, as it
happens that erasures are experienced in diverse ways in the
various links connecting to the receivers. If an “acknowledge
or retrasmit” solution is employed, then the source needs to
determine which packets are missing at each destination and
must resend them. Furthermore, retransmissions may have to
be repeated several times, creating unnecessary delays even
with minor network loss probabilities.2 An approach based
on FEC codes solves these problems because the original
file can be reconstructed from distinct subsets of the packets.
Therefore, it is only necessary to ensure that a certain number
of packets is delivered.

Figure 1 displays how data (i.e., a source object) is dissem-
inated with the RaptorQ FEC [5]. The data is first divided into
blocks, called source blocks, that are processed independently
by the encoder. Source blocks are then partitioned into K equal
sized units named source symbols.3 The number of source
symbols across the various source blocks may vary (i.e., K
may change) but their size is always T bytes. The value of
T should be selected in such a way that it corresponds to the
payload size of a packet (i.e., the MTU of the network minus
the headers). This way, an erasure only affects a single symbol.

The encoder receives the source symbols to generate a
group of repair symbols. Since RaptorQ is a fountain code,
as many repair symbols as needed can be computed on the
fly. Moreover, since the code is systematic, the encoding
symbols are composed by the source symbols plus the repair
symbols. Therefore, source symbols can be placed directly in

2Imagine a network with a loss probability of 1%, and a client that wants
to send a 10MByte file, partitioned into 10K packets of 1KByte each, to 100
receivers. In the first multicast, every receiver will lose approximately 100
packets. Therefore, each of them will have to inform the sender about which
packets are missing, so that later on a specific retransmission is done for every
receiver. Since several of the resent packets will also be dropped, the process
has to be repeated a number of times.

3For now, we will not consider the need to add padding in some cases.

the packets, as no processing needs to be performed by the
encoder. The repair symbols are forwarded to the network as
they are produced. The benefit is that in the case where there
are no packets lost, decoding can be skipped and the data can
be immediately delivered to the application.

The decoder takes the collected encoding symbols (any
subset with a size equal or slightly larger than K) to rebuild the
source block. Each repair symbol compensates for a missing
source symbol. If more repair symbols arrive, they can also
take part in the decoding process, greatly contributing to
the probability of a successful decoding. These extra repair
symbols are the overhead symbols. The code overhead is the
minimum number of overhead symbols required to start the
decoding process. If N encoding symbols are used, then the
code overhead is given by o = N − K. The code overhead
can be agreed upon between the sender and receiver, the
minimum value is o = 0. Previous fountain codes in general
demanded reasonable levels of overhead to ensure a successful
decoding. RaptorQ however, can successfully decode with
a high probability with overheads as low as 0 to 2 (see
Section III-D).

III. OVERVIEW OF THE RAPTORQ STANDARD

This section gives a top-level explanation of the operation
of RaptorQ [5], focusing in more detail on the aspects that are
relevant to the understanding of the attack.

A. Partitioning the object data

RaptorQ needs the input object to be partitioned into
source blocks. The actual way of doing this is left to the
application, which has some freedom to define how the data
should be divided. Still, the code expects a few configuration
parameters to be provided, including the total size of the input
object, the symbol size T and the number of source blocks.
Additionally, the RFC also includes an example partitioning
algorithm (Section 4.3 of [5]). The algorithm makes the symbol
size equal to the maximum payload of a packet, ensuring that
a recommendation is followed where each packet contains
exactly one symbol. It then distributes the data through a
number of source blocks, trying to maximize their size while
taking into consideration the memory limitations of the re-
ceivers. After that, the source block is further divided into K
source symbols. The standard also considers a second level
of partitioning where a source block is broken down in sub-
blocks.4 Since this operation is optional and has no impact in
our work, we will disregard it in the remainder of the paper.

As Section IV will explain, our attack will create very
precise erasures based on the fact that a single symbol is placed
in a packet. As is recommended in the specification [5]

B. Encoding process

Figure 2 displays the main steps of the encoding process
that is applied to each source block. As we will see, the
decoding tasks are quite similar. First, the source block may
need to be padded to K ′. Second, the pre-code is applied to
the source symbols to create the intermediate symbols. Finally,

4This is used in the situation where a receiver has a very small main memory
space available, which could result in less than desired FEC protection.
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as many repair symbols as requested are generated. In the
following we will explain in greater detail these steps.

1) Adding padding: RaptorQ supports only a finite set of
values for the number of symbols in a source block. Thus,
sometimes padding needs to be added, creating an extended
source block. RaptorQ resorts to a precomputed table with
these values and other associated parameters, which are used
by the encoding and decoding processes (Table 2 in Section
5.6 of [5]). The extended source block has K ′ symbols, where
the first K are the original symbols and the remaining K ′−K
are padding symbols filled with zeros. K ′ is the value in
the table that is closest to K, but greater than or equal to.
Using a predefined set of possible values for K ′ minimizes
the amount of table information that needs to be stored at
each endpoint and effectively contributes to faster encoding
and decoding. Since K can be calculated from the input
configuration parameters at both peers, the padding symbols
do not need to be transmitted.

2) Identifying the symbols: Each source block is identified
with a non-negative integer called the Source Block Number
(SBN). The encoding symbols produced from a source block
are identified with an Encoding Symbol ID (ESI). As RaptorQ
is a systematic code, the encoding symbols consist of the
source symbols plus the repair symbols associated with them.
The ESIs for the source symbols are 0, 1, 2, ...,K − 1 and
the ESIs for the repair symbols are K,K + 1,K + 2, ...
Thereby, each encoding symbol is uniquely designated by a
pair (SBN,ESI), and this information must be conveyed in
the packets to the receiver(s).

However, for purposes of encoding and decoding data, K ′
source and padding symbols are utilized. Thus, the encoder
and decoder employ the Internal Symbol ID (ISI) to identify
the symbols belonging to an extended source block. The source
symbols’ ISIs are (once again) 0, 1, 2, ...,K − 1, the padding
symbols have ISIs K,K + 1,K + 2, ...,K ′ − 1, and, finally,
the ISIs of the repair symbols are K ′,K ′ + 1,K ′ + 2, ...

As we will see in Section IV, the attack will exploit the fact
that the symbol identification is well-defined and deterministic.

3) Computing the intermediate symbols: The second step
of encoding is to calculate L > K ′ intermediate symbols out
of the extended source block. This is achieved by building and
solving a system of linear equations, whose unknowns are the
intermediate symbols. Figure 3 shows that the constraint matrix
A is divided into three parts, each associated to a different
kind of code. The top part, consisting of the first S equations,
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Fig. 3. Computing the intermediate symbols during encoding.

corresponds to a Low Density Parity Check (LDPC) code. The
middle part has H equations and represents a High Density
Parity Check (HDPC) code. Finally, the bottom part, consists
of K ′ equations that apply a Luby Transform (LT) code.

Vector S: The vector with the constant terms has a well defined
form (see right side of the figure): (i) the first S + H rows
correspond to pre-coding constraints and have value 0; and
(ii) the last K ′ rows are the source symbols plus, if they exist,
the padding symbols.

LDPC and HDPC Codes: The two top parts of matrix A
are used as constraints that establish pre-coding relationships
amongst the intermediate symbols. Each of the first S + H
rows of the matrix defines an equation that relates a subset
of intermediate symbols, in such a way that their sum is
equal to zero. These constraints are specified in some detail
in the RFC, and sometimes they have a simple format (e.g.,
three 1’s per column in G LDPC 1) while in others they
require exponentiations and pseudo-random numbers (e.g., in
the G HDPC).

Both the LDPC and LT parts of the matrix have equations
with coefficients in the finite field F2 (i.e., 0 or 1). The HDPC
code defines equations with values belonging to the finite field
F256. Using a code over F256 in the constraints greatly con-
tributes to a better overhead-failure performance of RaptorQ
(the rationale is discussed in detail in Section 3.3.1 of [32]).
The drawback is that some of the mathematical operations can
become more complicated to implement (e.g., multiplication).
The standard addresses this difficulty by providing a way to
perform these operations with the help of a few table lookups.

LT Code: The LT part is responsible for actually pre-coding the
source symbols into the intermediate symbols. The LT codes
encoding procedure relies on two random number generators.
In the RaptorQ standard, these generators are hidden inside
a “Tuple Generator” function that carefully substitutes them
with pseudo-random generators, which have the useful char-
acteristic of ensuring effective decoding. “Tuple Generator”
is defined in the RFC with the help of the Enc and Tuple
procedures (Sections 5.3.5.3 and 5.3.5.4 of [5]). The function
receives as input the identifier of a symbol (ISI) and the total
number of symbols in the extended source block (K ′). As
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result, it produces a tuple with L entries with values of either
0 or 1. Therefore, the tuple corresponds to a vector with one
dimension (or an equation) that can be added to matrix A. For
example, when the “Tuple Generator” is called with ISI equal
to 0, the returned tuple is placed in row 0 of the LT part of
matrix A.

In Section IV, we will explain that by predicting the
outcome of the “Tuple Generator”, the adversary can insert
specific equations in the matrix.

Resolving the system: The system of linear equations A · I =
S has to be solved so that the intermediate symbols can be
obtained. In other words, it is necessary to find the inverse
matrix of A to get I = A−1 · S. In the encoding process, the
inverse matrix can always be found because the equations are
constructed in such a way that A is full rank.

Since this task is the most time consuming of the whole
algorithm, it is recommended that an optimized method is
utilized. A potential candidate is based on a permanent inac-
tivation technique mentioned later in the section. The reader
should notice that this part of the process actually corresponds
to a decoding operation – the intermediate symbols are being
recovered from well known information (the source symbols),
so that they can be used to create the repair symbols.

4) Producing the repair symbols: The final step of encod-
ing is depicted in Figure 4 and corresponds to the calculation
of the repair symbols. This step is accomplished through a very
efficient procedure that applies a LT code to the intermediate
symbols. The “Tuple Generator” is again called, but now with
the identifier of the target repair symbol (ISI = x). The
returned tuple has L entries with values of either 0 or 1. Next,
the repair symbol is obtained by multiplying the tuple by the
intermediate symbols vector. This multiplication corresponds
in practice to an XOR of some of the intermediate symbols
as: (i) the entries of the tuple with value 1 choose the symbols
that are utilized in the calculation, and (ii) the addition of two
symbols is implemented with an XOR (in the finite field F256

the add operation is an octet-by-octet XOR).

An alternative way of viewing this step is to recall the
system of linear equations of Figure 3. The tuple corresponds
to an extra equation that is placed at the bottom of matrix
A, while the repair symbol is an additional entry at the
end of vector S. Therefore, after resolving the pre-coding
constraints, the matrix A together with the I vector can be
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utilized to generate all encoding symbols (both the source5 and
the repair). Moreover, as many repair symbols as desired can
be produced on the fly only by changing the ISI provided to
the “Tuple Generator” and by appending additional equations.

To summarize the encoding procedure: the extended source
block is constructed; then, a system of linear equations contain-
ing the pre-coding constraints is solved to get the intermediate
symbols; the repair symbols are calculated using a “Tuple
Generator” that selects a subgroup of the intermediate symbols
to be XORed together. Finally, the set of the original source
symbols together with the repair symbols become the encoding
symbols.

C. The decoding process

The decoding process is actually very similar to encoding.
The decoder is assumed to know the structure of the source
block (e.g., K, T ), as this configuration information must be
conveyed by the transmitter. Therefore, the decoder knows
how to create the extended source block, incorporating the
appropriate padding symbols. To decode the extended source
block, let us assume that the receiver gets N ≥ K encoding
symbols for that block. If all source symbols arrive, then
decoding is immediately finished. Otherwise, the construction
of a system of linear equations takes place, similar to the
previous one (Figure 3). There are differences in the systems
of equations mainly due to a couple of minor issues: (i) any
equation of a missing source symbol is replaced by an equation
corresponding to a repair symbol (in the LT part); (ii) if
additional repair symbols are received, they may also take part
of the system of equations, ensuring a much greater probability
of successful decoding (these are the overhead symbols).

Figure 5 provides an example decoding operation. There
are six source symbols and three repair symbols, and one of
each was lost in the network: source symbol Si was dropped
and repair symbols Rx and Ry were received. As described
in Section III-B3, a system of linear equations A · I = S
needs to be built in order to calculate the intermediate symbols.
However, one of the source symbols is missing. Even though
we are able to determine its associated equation in line i of
the LT part of matrix A, since we do not know its value, we
cannot complete vector S.

5Of course, in practice this is obviously unnecessary, since the source
symbols are already available.



However, two repair symbols arrived, Rx and Ry . Using
the ISI of the first, x, we can generate a tuple using the “Tuple
Generator”, which can then be used to replace Si’s row in
matrix A. The new matrix has the Rx’s tuple in the i row
and uses Rx’s value in vector S. Let us call the new matrix
and vector A∗ and S∗ respectively. Additionally, since Ry is
available, the “Tuple Generator” can be employed to create the
tuple y, which is inserted as an extra equation of the matrix.

We have now a complete system: A∗ · I = S∗. It can be
solved by inverting A∗, such that I = A∗−1 ·S∗. However, in
contrast to the encoding process with matrix A, it can happen
that A∗ is not invertible. In fact, if there is no A∗−1, we
have a decoding failure. In spite of that, there is an extremely
high probability that the system of linear equations can be
resolved, as we will see in Section III-D, when decoding failure
probabilities are analyzed.

The extra rows of A∗ greatly increase the probability that
the matrix is invertible (due to repair symbols like Ry). Since
there are more rows than columns, with certainty there will be
a linear dependency among the equations of A∗. However, this
creates no difficulties because after A∗ is reduced to its row
echelon form, only L equations should remain. Since there is
a larger number of rows, it is less probable that one cannot
find a set of L rows that are linearly independent. Hence, the
higher probability of A∗ being invertible.

Upon successfully solving the system of linear equations,
the result is once again the set of intermediate symbols. The
intermediate symbols can then be used to recover any missing
source symbol, in an equivalent fashion to generating the repair
symbols (see Figure 4), namely by: (i) calling the “Tuple
Generator” with the ISI of the target source symbol, to compute
the tuple that selects the intermediate symbols to be XORed,
and (ii) XOR those intermediate symbols which will result in
the missing source symbol.

To solve the system of linear equations, instead of using
regular Gaussian elimination techniques such as LU decompo-
sition, an algorithm that benefits from the specific structure of
the system of linear equations is recommended, namely one
that explores the fact that matrix A∗ is sparse.

1) Permanent inactivation decoding: Permanent inactiva-
tion is a technique that overcomes many of the shortcomings of
the dynamic inactivation of R10. It is used to solve the system
of linear equations of RaptorQ in an efficient way, contributing
for a significantly better performance (Section 5.4 of [5]). In
permanent inactivation, a subset of the intermediate symbols
is designated as inactive before decoding starts.6 It is executed
in five phases, which transform matrix A∗ into successively
simpler formats, allowing in the end an easy calculation of the
unknowns (or the discovery that there was a decoding failure).

In Section IV, our attack will focus on making matrix A∗

non-invertible, thus forcing a decoding failure.

D. Evaluation of overhead / failure probability

One of RaptorQ’s greatest advantages is its steep overhead-
failure curve. In regular circumstances, it is highly unusual

6For example, the “Tuple Generator” sets a few entries in the tuple to 1,
which correspond to the permanently inactive (PI) symbols.

TABLE I. DECODING FAILURE PROBABILITY FOR A CODE OVERHEAD
OF 0, 1 AND 2 SYMBOLS AND A NETWORK LOSS RATE RANGING BETWEEN

10% AND 85%.

Number of Source Symbols (K)

Overhead 0 [·10−3] Overhead 1 [·10−5] Overhead 2 [·10−7]

Loss 10 26 101 10 26 101 10 26 101

10% 0 5.4 5.7 0 0 3.8 0 0 2.5

20% 0 4.0 4.8 0 2.3 2.4 0 0 0.5

50% 0 3.9 4.9 0 1.6 2.5 0 0.9 1.2

60% 4.8 4.1 4.9 0 1.5 2.2 0 0 2.1

85% 0 12.7 4.7 0 0.8 2.4 0 0 1.3

for the decoding process to fail, which is important as this
type of codes may be employed in mission critical scenarios.
RaptorQ was shown to have a failure to decode probability
that closely matches the performance of an ideal fountain
code [33], approximating the model of (1):

PfRQ(N,K) =

{
1 if N < K
0.01× 0.01N−K if N ≥ K

(1)

As expected, the decoder cannot recover the original data
if it gets less encoding symbols N than the number of source
symbols K. However, when more encoding symbols arrive,
the probability of failure declines very rapidly, and with only
two additional symbols decoding is successful almost every
time (i.e., with an overhead of o = N −K = 2, failures occur
once in a million times). This is generally more than enough
for the vast majority of applications using UDP.

As part of our investigation, we also wanted to analyze
(and confirm) the performance of RaptorQ in the field, under
a straightforward communication scenario. Since no public do-
main distribution currently exists for the standard, we created
our own implementation7. RaptorQ execution was evaluated in
the following way: input data was generated for the values of
K equal to 10, 26 and 101; next, the data was encoded and
enough encoding symbols were generated to tolerate random
network losses of 10%, 20%, 50%, 60% and 85%; after this,
decoding was attempted with the remaining encoding symbols.
The experiments were carried out for the most commonly
recommended overheads (i.e., o = N − K, with o = 0...2),
and each test was repeated between 20 million and 30 million
times to get a reasonable level of confidence in the results.

Table I displays the observed failure probabilities. These
results fall in line with the evaluation found in Appendix
B.3 of [32] and they confirm the reliability claimed by the
RaptorQ standard. The failure probability is very small in all
experiments, in the order of 10−3 for N = K and decreasing
rapidly to 10−7 for two overhead symbols. In some tests, we
never observed a decoding failure, while in several others the
failures were only seen once or twice. For instance, in our tests
for K = 10 we only observed failures with 60% network loss.

IV. BREAKING THE RAPTORQ STANDARD

One of the most interesting properties of FEC codes is the
ability to use the same repair symbols to recover from different

7The source code is available under an Open Source license at: http://www.
lasige.di.fc.ul.pt/openrq/



independent packet losses at various receivers. Independent
packet losses must be emphasized, as the erasure patterns are
mainly the result of a random process that causes very diverse
packet drops (from single events to large bursts). As stated in
the book Raptor Codes [32], written by two of the authors of
RaptorQ’s RFC [5], the code was built under the assumption:

“... we will assume that the set of of received encoded
symbols is independent of the values of the encoded
symbols in that set, an assumption that is often true
in practice. These assumptions imply that for a given
value of K, the probability of decoding failure is
independent of the pattern of which encoded symbols
are received and only depends on how many encoded
symbols are received.”

In a benign environment this sort of reasoning is com-
pletely acceptable, as faults are of an accidental origin. How-
ever, in a malicious setting, an adversary can attempt to
break the “independence” assumption to prevent the code from
recovering the original data even if “enough” packets arrive.

A. Successful attack

A successful attack occurs when the adversary is able
to foil the correct recovery of one or more source blocks
at the receiver. In this case, the recipient cannot obtain the
full transmitted data, which corresponds in many practical
scenarios to no information being retrieved. For example, if
some authentication/integrity check needs to be performed
before the content is utilized, missing a small portion of the
data normally precludes the validation of the rest (e.g., if the
check is based on a signature over a hash of a file).

In order to compromise the FEC operation, the adversary
may try to corrupt the stream of packets, either by changing
their content or by inserting erroneous packets. The standard
of RaptorQ already discusses this sort of malicious action
(Section 6 of [5]), and provides a solution based on source
authentication and integrity checking. The effect is that the
modified/inserted packets are simply eliminated at the destina-
tion, in fact transforming them into erasures that are trivially
addressed by the code. Another form of disruption would be
to change the information of configuration (e.g., the symbol
size) forwarded by the sender to the receiver. Once again, the
standard recommends the use of source authentication to take
care of this issue.

Our attack is different because it only performs erasures,
which typically should be well tolerated by the code. Further-
more, we strive to be stealthy in the sense that enough encoding
symbols are allowed to reach their destination so that decoding
can be attempted. Consequently, this rules out trivial attacks
where a source symbol and all repair symbols are erased.

B. Adversary model

The adversary is capable of listening to the information
being exchanged among the peers, and it is assumed that she
is not one of such peers. Therefore, she is either on the path
of the packets or she can have them be rerouted through a link
under her control. Additionally, the adversary can drop specific
packets in the network. In order to have this sort of capability,
the adversary could control one of the routers near the sender.

Alternatively, if she has physical access to the link, certain
frames can be read and corrupted to force their removal. As
we will see, in an initial version of the attack, the adversary
uses the headers of the packets to decide on which ones should
be eliminated.

The adversary necessitates an extra capability in the ex-
tended attack where the FEC operation is disturbed with
encrypted channels (e.g., with IPsec). She needs to observe
the flow of packets before they suffer reordering or losses in
the network. This means that the attack has to be executed in
a place in the network where the sequence of packets arrives
without being altered.

Of course, sometimes the attack may have to be carried
out in less than optimal conditions (i.e., there are certain
periods of time where our assumptions do not hold). When
this occurs, the adversary may erase the wrong packets, and
enough information will arrive at the receiver to allow a source
block to be retrieved. However, when the network starts to
behave as expected, the adversary becomes effective again at
causing decoding failures. Consequently, in this case, the attack
is probabilistic.

C. Rationale for the attack

The transmitter node normally operates by dividing the
original data in a set of source blocks, which are then pro-
cessed individually (see Figure 1). The source block is further
partitioned into K source symbols that are sent together with
a number R of repair symbols. The value of R is normally
calculated by the sender based on the locally perceived loss
rate of the network. For example, for a loss rate of l and
a desired decoding overhead of o, the minimum number of
repair symbols is (2):

R ≥
⌈
lK + o

1− l

⌉
(2)

With this level of redundancy, the receiver can get enough
encoding symbols (K + o) that with a very high probability
enable the source blocks to be rebuilt and eventually the
whole data. Of course, in some settings, this solution for
reliable communication could be complemented with addi-
tional mechanisms to address the rare cases when decoding
does not succeed. For example, a retransmission protocol
could be used afterwards or extra repair symbols could be
generated and transmitted. However, since these mechanisms
are not considered in the RaptorQ standard and are application
specific, we will disregard them and focus on how to disrupt
the common part of the execution.

To defeat the FEC operation it is sufficient to erase one of
the source symbols and then force the decoding process to fail
in the associated source block. The remaining packets can go
through and no extra drops are necessary. Therefore, the efforts
can be concentrated in breaking the recovery of a single source
block, as this is enough to ensure a successful attack. One
however should keep in mind that, since decoding is similar
in every source block, it is easy to replicate the malicious
actions with the remaining ones (or a subset of them).

One simple solution to forcefully cause a decoding failure
would be to eliminate a few source symbols and all repair



symbols. This however would be an obvious Denial-of-Service
(DoS) attack, which is inelegant and could be trivially discov-
ered. To increase the difficulty of detection, the attack should
be performed in such a way that erasures are somewhat similar
to the losses that are usually observed in a network, but with
a much higher impact – these erasures happen to halt source
block recovery.

As explained in Section III-C, once the RaptorQ decoder
computes the intermediate symbols, then the decoding pro-
cess is definitely successful – every source symbol can be
obtained without the need for more packets to be transmitted.
Consequently, it is necessary to hinder the calculation of
the intermediate symbols. Since these symbols are calculated
as the result of solving a system of linear equations, the
adversary’s objective should be to impede the completion of
this task. There are two possible outcomes associated with the
failure of finding a solution for a system of linear equations:

1) no solution if the system is inconsistent (a.k.a.
overdetermined);

2) many solutions if the system is consistent but under-
determined.

The first case does not occur with RaptorQ because of
the way the equations and repair symbols are computed at
the sender. The other case is observed when the number of
linearly independent equations is smaller than the number
of unknowns. Given that the system of linear equations cor-
responds to a coefficient matrix A∗M×L and an augmented
matrix Ab∗M×(L+1), where M ≥ L, then for the second case
to hold the following condition must be true: (rank(A∗) =
rank(Ab∗)) & (rank(A∗) < L). This implies that to induce
a decoding failure, the adversary must force the rank of the
matrix A∗ to be inferior to L, i.e., the number of intermediate
symbols.

D. Forcing a decoding failure

The encoding symbols are accumulated by the recipient
until a set of size N ≥ K arrives. Then, the decoder initiates
the reconstruction of the source block. Each encoding symbol
defines a linear combination (or a constraint) among the
intermediate symbols. The linear combination is specified only
by the ISI of the encoding symbol and the number of symbols
in the extended source block, K ′. Accordingly, it corresponds
to a linear equation among the intermediate symbols, i.e., a
line of matrix A∗.

Matrix A∗ has exactly L linear equations if N = K,
part of them stipulated by the pre-coding relations among the
intermediate symbols (S + H) and the remaining K ′ due to
the encoding symbols and the padding (L = S + H + K ′;
K ′ = K + Pad, where Pad is the number of padding
symbols). If there are more encoding symbols than K, then
the matrix will have more linear equations than unknowns,
which is helpful to increase the probability that a solution can
be found.

The adversary has some sort of network control, which lets
her selectively eliminate packets and decide on which packets
(i.e., encoding symbols) arrive at the receiver. For example, she
can drop one of the source symbols and a number of repair
symbols that would replace it. Then, a specific repair symbol
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Fig. 6. Example attack for K′ = 10, with 10 source symbols and 3 repair
symbols.

would be allowed to go through, to be included in the set of
encoding symbols kept in the receiver. The consequence of
this action is that when decoding is applied, the system of
linear equations of matrix A∗ would be modified in one of the
equations.

This reasoning shows that the adversary may to some
extent define the system of linear equations that is used by
the decoder. Therefore, at least in theory, she could make
that system of linear equations underdetermined, by letting
encoding symbols arrive at the receiver whose constraints
(lines in matrix A∗) are linearly dependent of the other
equations. As a result, the adversary would have decreased
the rank of matrix A∗ below L, preventing the intermediate
symbols from being recovered.

It is interesting to take notice that the attack is completely
independent of the data being transmitted. The constraints
depend fundamentally on how the standard identifies the
encoding symbols, which is something that is completely
deterministic. The first encoding symbol has ISI 0, the second
has ISI 1, and so on. This means that the selection of which
packets should be erased can be pre-computed before the
attack, which permits its execution in real-time (and ideally
at line speed). Moreover, it suggests that exploitation can
potentially happen even if communications are encrypted.

Example: Assume a scenario like the one depicted in Figure
6, where the sender estimates 17% for the average loss rate of
the network and there are K = 10 source symbols per source
block. In this case, three repair symbols are transmitted to
tolerate the erasures that might take place (overhead o = 0).
The adversary removes the first (ISI = 0), ninth (ISI = 8)
and twelfth (ISI = 12) packets. When the receiver builds the
system of linear equations of matrix A∗, the lines correspond-
ing to the source symbols are replaced by the ones relative to
the received repair symbols. However, the resulting matrix A∗

would have a linear dependency among the lines, lowering its
rank and rendering the system of equations underdetermined.



Algorithm: The attack removes all source and repair symbols
but the ones that will cause a linear dependency among the
equations of matrix A∗. Potentially, for each value K, there are
several erasure patterns that cause this same type of problem,
but some will require many more network packets to be
eliminated. If this number is high above the average packet
loss for a particular network, then the attack becomes harder
to put in practice.8 Consequently, we investigated algorithms
that could not only discover the necessary erasure patterns, but
that could also minimize the network losses.

An obvious way to increase the chances of introducing a
linear dependency in the system of equations is to methodically
eliminate each of the source symbols and find a repair symbol
that produces a linear dependency. This would support the
discovery of the one that requires less encoding symbols to be
lost. But why stop there? Why not try to increase the chances
even further, by dropping more than one source symbol? One
can even try replacing each combination of source symbols,
with different combinations of repair symbols. This way, it
is ensured that every possible case is considered, and hence,
a scenario could be found where the attack is much more
efficient.

Naturally, given the brute force nature of the approach,
it could produce a very high number of combinations to be
explored. This could prevent results from being obtained in a
useful time frame, due to the massive number of computations
that had to be performed. One however should notice that the
search is quite simple to parallelize, and a large number of
machines can be enrolled to run the algorithm concurrently.
For example, each machine could execute the algorithm for a
distinct value of K. Moreover, once a combination is found, it
can be used forever – as long as the standard stays unchanged.

Algorithm 1 describes the approach that we are currently
using to discover the erasure patterns. The algorithm receives
three input arguments: (1) K is the number of symbols in
the source block; (2) o is the decoding overhead that should
be simulated; and (3) upperLimit is the maximum number
of symbols the attacker is willing to drop. UpperLimit
parameterizes the “risk” of the attack, i.e., if too many symbols
are dropped then the attack becomes less stealthy. Additionally,
it is also associated with the time and computational effort that
should be invested to find a solution.

The algorithm starts by setting up the various con-
stants that configure the execution of the code by calling
getParameters (line 2). This function basically does a
table lookup (Section 5.6 of [5]) and a few calculations
(Section 5.3.3.3 [5]), and returns the number of symbols in the
extended source block K ′ and the dimensions of the decoding
matrix and its submatrices (i.e., S, H and L; recall Figure
3). Next, it initializes the variable dropS, which holds the
minimum number of symbols that has to be dropped to carry
out the attack.

The array targetEq is populated with the ISIs of the
potential target encoding symbols for elimination (lines 4-7). It
includes all source symbols, and eventually the repair symbols

8The adversary could always delete packets to make the sender adjust the
average loss rate to higher value, and as a consequence, increase the number
of repair symbols that are transmitted. At that point, the attack would become
viable again.

Algorithm 1 Find erasure pattern for RaptorQ.
1: procedure FINDATTACK(K, o, upperLimit)
2: (K ′, S,H,L) ← getParameters(K)
3: dropS ← upperLimit
4: for s← 0, K − 1 do
5: targetEq[s] ← S +H + s

6: for s← K ′, K ′ + o− 1 do
7: targetEq[s+K −K ′] ← S +H + s

8: for r ← 0, upperLimit− 1 do
9: targetRepair[r] ← K ′ + o+ r

10: A ← generateDecodingMatrix(K ′)
11: if o 6= 0 then
12: for i ← L, L+ o− 1 do
13: tuple ← createTuple(K ′, i− L+K ′)
14: A[i] ← createEq(K ′, tuple)

15: for n ← 1, K + o do
16: while dropS > n do

17: combinationsEq ←
(
targetEq

n

)
18: combinationsRep ←

(
targetRepair

n

)
19: for all setEq in combinationsEq do
20: if setEq has no source symbol then
21: continue
22: for all setR in combinationsRep do
23: if max(setR)−K ′−o+1 ≥ dropS then
24: continue
25: i ← 0
26: for all r in setR do
27: tuple ← createTuple(K ′, r)
28: rEq[i] ← createEq(K ′, tuple)
29: i ← i+ 1
30: newA ← A
31: i ← 0
32: for all s in setEq do
33: newA[s] ← rEq[i]
34: i ← i+ 1
35: reduceToRowEchelonForm(newA)
36: if getRank(newA) < L then
37: dropS ← max(setR)−K ′ − o+ 1
38: wFile(K, o, dropS, setEq, setR)

that would create the overhead equations (the padding symbols
are excluded). The array targetRepair is initialized with
the ISIs of the target repair symbols that are available for this
attack, i.e., to substitute the deleted encoding symbols (lines 8-
9). The decoding matrix is generated assuming that no symbol
was lost and that o overhead extra equations are to be employed
(lines 10-14; Section 5.3 [5]).

Next, the algorithm initiates the search for erasure patterns
that create a decoding failure. Each pattern is defined by two
sets containing: (a) the ISIs of target encoding symbols that
have to be dropped; and (b) the ISIs of the target repair
symbols that should be allowed to go through (the rest have
also to be eliminated).

The loop is executed for sets of target encoding symbols
with sizes of 1 to K + o. For each size, the various com-
binations of target encoding symbols are found and stored in



TABLE II. NUMBER OF ENCODING SYMBOLS THAT MUST BE DROPPED AND INDUCED LOSS RATE (IN %) OF THE BEST ERASURE PATTERN FOR
DIFFERENT NUMBERS OF SOURCE SYMBOLS (K) AND OVERHEADS (OVER).

Number of Source Symbols (K)

Over 10 26 32 42 55 62 75 84 91 101 153 200 248 301

0 3 (23.1) 3 (10.3) 2 (5.9) 2 (4.6) 2 (3.5) 2 (3.1) 2 (2.6) 2 (2.3) 1 (1.1) 2 (1.9) 2 (1.3) 1 (0.5) 2 (0.8) 3 (1)

1 7 (38.9) 4 (12.9) 5 (13.2) 2 (4.4) 4 (6.7) 3 (4.6) 4 (5) 6 (6.6) 8 (8) 7 (6.4) 3 (1.9) 8 (3.8) 4 (1.6) 2 (0.7)

2 12 (50) 9 (24.3) 7 (17.1) 4 (8.3) 5 (8.1) 5 (7.3) 5 (6.1) 7 (7.5) 4 (4.1) 9 (8) 4 (2.5) 6 (4.7) 11 (4.2) 15 (4.7)

355 405 453 511 549 600 648 703 747 802 845 903 950 1002

0 2 (0.6) 2 (0.5) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0.1) 1 (0.1) 1 (0.1) 1 (0.1) 2 (0.2) 1 (0.1) 1 (0.1)

1 2 (0.6) 8 (1.9) 2 (0.4) 7 (1.4) 2 (0.4) 4 (0.7) 2 (0.3) 3 (0.4) 8 (1.1) 6 (0.7) 3 (0.4) 2 (0.2) 6 (0.6) 4 (0.4)

2 10 (2.7) 6 (1.5) 14 (3) 50 (8.9) 5 (0.9) 10 (1.6) 7 (1) 57 (6.3)

variable combinationsEq (line 17). Similarly, the sets with
the combinations of target repair symbols are also computed.
Then, every combination of target encoding symbols setEq
is tried with all combinations of target repair symbols setR.
SetEq has however to include at least one source symbol,
since otherwise the recovery of the source block is immediate
at the receiver (lines 20-21).

The test to find out if a decoding failure arises with the
replacement of setEq with setReq is done in the following
way: (1) the repair equations are created, based on the ISIs in
setR (lines 25-29); (2) decoding matrix is modified, so that
the target encoding symbols equations are substituted by the
repair equations (lines 30-34); (3) finally, the matrix is reduced
to its row echelon form, so that its rank can be determined. If
the rank is lower than L then the attack was successful. The
value of dropS is updated and the erasure pattern is stored in
a file (lines 36-38).

The algorithm includes two optimizations worth mention-
ing. The exhaustive search part of the algorithm is only
executed if the new erasure being targeted is more efficient
than the best pattern discovered until that moment (line 16).
Additionally, the set of target repair symbols is analyzed to
find out if it would require a total number of dropped symbols
larger than dropS (lines 23-24, where max returns the largest
ISI in the set). With both optimizations in place, it is possible
to greatly reduce the number of tests, especially as better era-
sure patterns are discovered. Both cases prevent unnecessary
executions of reduceToRowEchelonForm, which is by far
the most computationally complex part of our algorithm.

Note that RaptorQ processes each source block in a de-
terministic way. Therefore, all of this computation can be
performed beforehand, to generate the erasure patterns for
every combination of (K, overhead). Therefore, the attack can
be made fast, without introducing a detectable lag into the
communication. That is, we can run the algorithm once for
the target values of K, and then perform the attack as many
times as desired by doing simple lookups. The computational
requirements of the attack machine can be reduced to a bare
minimum, as all it needs to do is get the ISIs of the erasure
pattern from some source (e.g., a file) and drop/forward the
related packets.

E. Erasure patterns

Algorithm 1 was implemented and tested with 28 example
numbers of symbols per source block (K), ranging between
10 and 1002. Other examples could have been tried as the

algorithm works for all values of K considered in the standard.
For each K, the attack was tried with zero, one and two
overhead symbols. For each successful attack, we collected
the erasure pattern and counted the number of packets that
had to be dropped. As the count is associated with the level of
stealth, it can be seen as a measure for the practicality of the
attack. The algorithm has been running non-stop for a little
over six months in a machine with two Intel Xeon E5520 at
2.27GHz, each with 4 cores and 2 threads per core, and 32GB
RAM. Every other week we find novel erasure patterns that
either are capable of causing a decoding failure in a new pair
(K, overhead) or improve the attack efficiency of previously
discovered patterns. The results collected so far are displayed
in Table II. Each entry in the table presents the number of
encoding symbols that have to be erased and, in parentheses,
the induced loss rate percentage (l = D/(K+o+D), where D
is the number of erasures). Note that in some cases no erasure
pattern has been found yet. This is due to the brute force nature
of the approach, which typically requires many combinations
to be tested for higher values of K and overhead.

The table shows that for most cases we were able to
discover an erasure pattern that could prevent the decoding
of a source block. The values for the number of dropped
symbols varied a lot, from a few hundreds to just one, which is
expected as these are independent events. For overheads of 0
extra symbols, the attack is successful in all evaluated K and in
most scenarios requires only a single packet to be eliminated.
Therefore, just by carefully picking the source symbol to be
deleted and letting a repair symbol pass, the adversary can
have a massive impact on the failure probability, completely
destroying the robustness shown for accidental faults.

For non-zero overheads, the attack is still viable in most
of the scenarios. At least one erasure pattern was found for all
tests with overhead 1, and we are still experimenting with some
values of K for overhead of 2. In some cases, the attack is
extremely efficient. For instance, with K = 648 and 1 symbol
of overhead, the adversary would have to eliminate only 2
symbols (0.31% of the total number of packets in a source
block), to force a decoding failure, that, if it were to occur
by chance, the probability would be in the order of 10−5. In
other cases, the number of packets that has to be eliminated
is reasonably high (e.g., 50 for K = 511 with 2 overhead
symbols). However, if one considers the whole transmission
of a reasonably sized file, which involves many source blocks,
then the overall loss rate is still acceptable – recall that the
adversary only needs to prevent the recovery of a single source
block.



Risk Assessment: Note that the discussed erasure patterns
were optimized to drop as few encoding symbols as neces-
sary. In most scenarios that would be ideal to preserve the
stealthiness of the attack. However, in a few cases this may
not necessarily be true. Some networks may lose packets in
bursts and loss rate may also vary by orders of magnitude.

Let us consider a scenario where the network loss is high.
The sender will compensate for this problem by transmitting
more repair symbols. Using one of our erasure patterns would
imply dropping very few packets for the attack, and then
eliminating several repair symbols (all the ones after the
last encoding symbol that should go through). Erasing many
packets, namely consecutive packets, may hinder stealthiness.

However, the attack offers more flexibility than that. Instead
of going for the most “efficient” erasure pattern, the adversary
could use a supposedly worse erasure pattern, which incurs
in more packet erasures, but suits better the current network
behavior. In some cases an erasure pattern that needs to drop
20 packets may be stealthier than one that only requires 3
packets to be deleted.

Note that there are natural limits to the stealthiness of
the attack. If the expectation of decoding errors is very low
to begin with, then even a single decoding error may raise
suspicion, and two in close succession should trigger an
inquiry into the reasons. In practice, however, it may well be
the case that a number of decoding errors will be attributed to
implementation bugs or other inexplicable behavior such “bad
network weather” before an attack is seriously considered.

V. ATTACKING A TFTP APPLICATION

This section describes how a Trivial File Transfer Protocol
(TFTP) application protected with the RaptorQ FEC was
attacked. TFTP is a simple protocol for file transfer, which
is specified in IETF’s RFC 1350 [34]. TFTP communication
is made over an unreliable datagram channel (UDP) and its
functionality is basically confined to the reading and writing
of files between a client and a server.

a) Application: We modified the TFTP client and server
included in the Apache Commons Net module of the Apache
Commons project9, which implements the client side of many
Internet protocols, including TFTP. The full distribution also
provides a TFTP server.

The operation of the client and server had to be updated
in order to take advantage of RaptorQ. Let us look at the use
case when a client wants to write a file (a file read works
similarly, but the client and server roles are exchanged). The
data being transmitted must first be encoded. More specifically,
the write request (WRQ) was extended to also transmit the
FEC configuration parameters. After receiving an acknowl-
edgment for the WRQ, the file to be uploaded is partitioned
into source blocks that are then encoded. The send buffer
(_sendBuffer) is filled with serialized encoding symbols,
and for each TFTPDataPacket sent thereafter, its payload
is an encoding symbol. On the server side, upon receiving
the WRQ packet, the FEC parameters are initialized and the
server awaits for the data. Instead of writing the data to
a file immediately, as in the original implementation, the

9http://commons.apache.org/
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Fig. 7. RaptorQ’s FEC Payload ID Format.

Fig. 8. RaptorQ’s Common FEC Object Transmission Information (OTI).

server stores the received encoding symbols in memory. When
enough symbols arrive, the decoding takes place and only then
the data for that block is stored in the file.

According to RFC 1350 [34], if a packet is lost in the net-
work, the intended recipient will timeout and may retransmit
his last packet (which can be data or an acknowledgment).
The WRQ and DATA packets are acknowledged by an ACK (or
ERROR) packet. A DATA packet includes an acknowledgment
for the latest ACK packet. We “relaxed” this communication
constraint, so the server would use RaptorQ to tolerate missing
DATA packets, and the client would not retransmit the previous
DATA packet if the corresponding ACK did not arrive. Natu-
rally, to do that we had to remove most of the timeouts and re-
transmission mechanisms used, namely in the handleWrite
and handleRead functions at the TFTP server, and the
sendFile and receiveFile functions at the client.

b) Collecting Information: In order to perform the
attack, the adversary needs to get some information about
the packets being transmitted to decide if they should be
eliminated or not. This information includes the identifiers
of the encoding symbols being sent and also configuration
parameters of the flow, such as the number of symbols per
source block. Fortunately, this information is also required by
the receiver for correct decoding, and therefore it must be
forwarded by the source.

RaptorQ RFC 6330 [5] defines a 4-octet header called
the FEC Payload ID that must be added to each packet
containing an encoding symbol (illustrated in Figure 7). The
header has one octet to identify the source block (the SBN)
and the remaining 3 octets represent the ESI of the encoding
symbol. Since the adversary has access to the network, and
the structure of the packets is well defined, she can easily
reverse engineer the packets and see the ESIs of each encoding
symbol. Therefore, even if the network reorders the packets,
this does not have an impact on the attack.

The adversary also has to discover the number of symbols
per source block to find out the erasure pattern that should
be applied. Furthermore, since the padding is not sent to
the network, she would not be able to separate the source
symbols from the repair symbols, which could hinder the
attack. RFC 6330 [5] describes a Common FEC Object Trans-
mission Information (OTI) that is used to transfer information
to the receiver, so it can calculate the necessary parameters for
decoding (e.g., K and K ′) (see Figure 8). By intercepting the



packet that contains this information, the adversary can obtain
the necessary knowledge (Transfer Length and Symbol Size)
to compute K.

c) The proof of concept attack: The client and server
machines were in different VLANs, and there was a third
machine acting as a router, connecting both VLANs. In this
third machine, we ran a packet sniffing tool that automatically
executed the attack. The actual network was a gigabit Ethernet,
and the three separate machines had two quad-core 2.27 GHz
Intel Xeon E5520 with 32 GB of RAM memory.

We developed a packet sniffing tool that is capable of
inspecting and dropping specific packets with the help of the
libnetfilter_queue library. The netfilter project10 is
responsible for the packet filtering framework inside the Linux
2.4.x kernel and later series. The libnetfilter_queue
provides an API that allows our tool to retrieve packets from
the kernel network stack. The packets are intercepted above
the link layer, but before they are handed over to the network
layer. Therefore, the tool gets the IP packets, and if necessary,
it reassembles the IP fragments. Then, it applies a filter to
determine what to do with the packet.

Since the header structure is well-defined and our im-
plementation respects it, it was straightforward to reverse
engineer the messages (the same can be said in regards to
UDP headers). All UDP packets were analyzed, looking for
the OTI information so that K could be computed. After the
OTI packet was captured, we listened for UDP packets and
matched the first 4 octets with the FEC Payload ID. For each
matching packet, the filter looked up in a table containing the
erasure patterns, to find out if that symbol should or should
not be reinjected in the network stack. In more detail, the filter
takes the ESI present in the FEC Payload ID, and from K is
able to know K ′ and calculate the symbol’s ISI (ISI = ESI
+ K ′ − K). If the ISI for a source symbol is present in the
erasure pattern for K then it would be dropped. However, if
it is for a repair symbol it would be forwarded. Otherwise,
all source symbols are forwarded and all repair symbols are
dropped.

If more repair symbols are allowed to pass than the ones
exactly needed, the receiver, in this case the TFTP server, may
be able to recover the data. The reason is that it might add
extra rows to matrix A∗ for these repair symbols, beyond the
ones for the normal overhead. The solution for this is for the
adversary to drop all other repair symbols apart from the ones
that would cause the decoding failure.

Since the table with the erasure patterns was created
prior to the attack (using Algorithm 1), the computational
requirements were minimal and the introduced latency in the
communication was negligible: the router machine had only to
perform simple table lookups and decide if the packet should
be forwarded or not. As a result, the attack induced the TFTP
server into considering that enough encoding symbols had
already been received to recover a block of the file. However,
when decoding was attempted, it always failed to retrieve that
source block. The attack was experimented with the first 10
values of K from Table II with overheads 0, 1, and 2. In our
environment, all attacks were successful.

10http://www.netfilter.org/

d) Extending the proof of concept attack: If other
packet losses occur besides the ones resulting from the attack,
the receiver will not get enough symbols to initiate the decod-
ing process. The sender could transmit more repair symbols to
compensate for those erasures. However, the linear dependency
is removed when the equations for the missing source symbols
are replaced with the equations for those repair symbols –
these repair symbols would nullify the attack. A more “attack-
friendly” solution would be for the adversary to block all repair
symbols being sent (apart from those included in the erasure
pattern), but randomly retransmit the encoding symbols that
should reach the receiver. Since UDP is being used, packet
duplication is expected and dealt with at the destination. This
way, the adversary can make the communication more reliable,
ensuring the arrival of all necessary encoding symbols.

Sender Receiver

Attacker Observer

Network

Attacker Observer

Fig. 9. Attack using two infected machines: one to attack, and the other to
observe which packets are reaching the receiver.

A more elegant way to achieve the same result, but
also requiring more craftsmanship from the adversary, is
to compromise another machine nearer the destination. This
machine would communicate with the machine performing the
attack via a (reliable) side channel, indicating which encoding
symbols are reaching the receiver. We illustrate this in Figure
9. With the help from the observer machine, the adversary
could retransmit the missing source symbols more precisely.

VI. ATTACKING OVER SECURE CHANNELS

In addition to being used for broadcast networks and media
delivery services, Raptor codes have been adopted for military
operations and other mission critical systems. Due to the
criticality of the scenarios, it is relevant to study the code’s reli-
ability also when communication is made over secure channels.
This is important because in critical scenarios RaptorQ might
be used together with complementary protection mechanisms,
as is suggested in IETF’s RFC 6363 [20]. An attack could be,
for example, against the privacy of the communication (e.g., to
access non-free content) or to corrupt the packets (forcing the
receiver to decode the data only to find it is garbage). Through
out Section 9 of RFC 6363 [20] one of the most proclaimed
solutions is the use of IPsec/ESP at the network layer.

The attack conceived in the previous sections is directed at
the design of the code’s standard, not the message’s content.
Namely, it exploits the fact that ISIs are associated sequentially
to the symbols (always beginning at 0 in each source block),
which are then used as a seed (together with K ′) to the
“Tuple Generator” that is employed to construct the system
of linear equations. Therefore, without having to look inside
the message’s content, an adversary can foresee, for each value
of K ′, which set of (ISIs of) encoding symbols would cause
a failure in the decoding process.



When using encrypted messages, for example, in a secure
channel, the attack is in theory just as viable. However, in
practice there could be some difficulties: (1) the adversary
needs to know the value K because it is crucial to determine
the erasure pattern that should be applied; (2) the packets may
be reordered or lost by the network, so the adversary will not
be able to know if a certain packet corresponds to a specific
ISI. In what regards to the latter, this may be easy to address,
as long as the attack machine is near the source. Normally,
packets are transmitted in the order of their ISIs to the network,
and therefore the adversary only needs to count the packets.

Moreover, a minor hindrance is the fact that the value
of K may vary for different source blocks. However, if the
implementation follows the standard’s partitioning algorithm,
if K changes, it should be only once and by of a factor of
1 (e.g., the first source blocks would have K source symbols
and the remainder would have K + 1).

a) Collecting Information: Since messages are en-
crypted, the adversary cannot see the content of the OTI as
in the clear-text attack. In some deployment cases, it might be
reasonable to assume that the adversary knows the value of K
because it could be a fairly static parameter. If that is the case,
the attack can be executed by counting and dropping packets
accordingly to the erasure pattern. It may also be reasonable to
assume that K is one amongst a small group of pre-selected
values. In this situation, the adversary only needs to try the
attack for the various possible values in the group, until one
of them is successful. If the adversary has no idea on the value
of K, then she will not be able to perform the attack because
she will not know which erasure pattern should be injected.
Following, we present a reasoning that might be used to guess
K in some scenarios.

Since the encoding and decoding processes are independent
for each source block, there is a risk that applications of
RaptorQ encoders perform encoding on demand on a per-
source block basis. In such a case, lapses between the packets
of consecutive source blocks may become noticeable (as illus-
trated in Figure 10). An adversary can exploit this information
leak to make educated guesses about the value of K. Knowing
K in turn re-enables the attack.

Source block i Source block i+1

…

Dela d e to the encoding ofDelay due to the encoding of 
the next source block

Fig. 10. Time lapse between packets of different source blocks.

Consider the scenario of Figure 10, where K = 10 source
symbols and three repair symbols are transmitted through the
secure channel per source block. The adversary would not
be able to differentiate the repair symbols from the source
symbols. However, as long as she was able to detect the time
lapse between the encoding symbols of each source block, she
could count the 13 encoding symbols. From there she can try
the attack vector corresponding to K = 13; the attack would
fail, but she could experiment with the attack vectors for other
values of K, until one of them is successful. So, this sort of
trial and error can yield positive results from the point of view

of an adversary. Recall that it is sufficient to prevent one of
the source blocks from being recovered to preclude the full
transmission of the file from client to the server.

It is important that application developers keep this threat in
mind when deploying RaptorQ codes in their implementations.
A buffered sending mechanism might already suffice to smooth
the timing patterns so that the attack is prevented. As far as
the authors are concerned, a risk of this kind is worth being
mentioned in the RFCs to make sure implementors are well
aware of it and may take the necessary precautions.

b) The attack: The setup of Figure 11 was used in the
experiment, based on same hardware as the previous attack.
The communication between the TFTP client (Node 1) and
the server (Node 2) was made with UDP over a IPsec [35]
channel using AH+ESP. In this environment, we observed that
the time lapse between the last packet of a source block and
the first packet of the next source block was on average at
least two orders of magnitude greater than the average interval
between two consecutive packets of the same source block.
Specifically, the lapse between source blocks was in the order
of milliseconds, while the interval separating two packets was
around tens of microseconds.

Node 2Node 1

Attacker
Router VLAN2VLAN1IPsec channel

Fig. 11. Setup used to attack over secure channels.

Note that the approach used by our packet sniffer fits
perfectly the needs for the attack over IPsec. With the correct
filter we can make the router machine behave just like an
infected machine would and drop packets at the network level,
never needing the data from the protocols higher in the network
stack. The filter was parameterized with the expected upper
limit for the time lapse between packets of the same source
block. It counts each packet going by, and when there is a
difference greater than that upper limit, it is assumed that there
is a “source block change”. Then, the attack can begin. The
filter drops packets accordingly to the erasure pattern being
injected, which is based on the number of packets counted.
Every time a new source block is detected, the filter tests the
next lower value of K, with the expectation that eventually the
right value is used.

In our case, since we had access to all the machines,
we could see in Node 2 when the decoding for a source
block was unsuccessful. One of the scenarios we tested had
a reasonably large file, with twelve source blocks each with
K = 453 encoding symbols. The decoding was carried out
with zero overhead, but one repair symbol was sent (in order
to tolerate one missing encoding symbol). Recalling our results
in Table II, for this case there was the need to drop only one
of the source symbols, namely the 101st. Furthermore, since
our network environment was fairly small and controlled, the
packets arrived in order to the attack router, which simplified
the attack. In bigger and more complex networks, this might



not be the case, which will require several tries until a source
block is not recovered.

VII. DISCUSSION

RaptorQ was not designed to be resilient against malicious
faults. However, due to the criticality of the environments
where it may be deployed, it is advisable to consider the
possibility of attacks. The RaptorQ RFC already includes a
few security considerations, namely related to: (1) denial-of-
service attacks where an adversary corrupts/inserts packets
that would be seen as legitimate by the receivers, causing
the computational cost of decoding, only to recover unusable
data; and, (2) if an adversary forges a session description
(in a multicast delivery), then the receivers would employ
incorrect parameters for decoding. Both of these concerns
can be solved with authentication, integrity and reverse path
forwarding checks.

Nevertheless, none of these solutions would actually be
able to prevent our attack. The attack explores intrinsic char-
acteristics of the code and the highly deterministic operation
imposed by the standard. Encrypting the messages may protect
the FEC operation, but in the end it can still be disrupted. Even
if the code implementation does not follow to the letter the
RFC (e.g., substitutes one the described functions), the target
ISIs for elimination would change, but the code could still be
compromised as long as the same base design was followed.

A. Extend the attack to the R10 code

The rationale for the attack will work on any Raptor code
that suffers from the issues present in the RaptorQ standard,
namely the sequential symbol identification (always starting at
0) paired with the pseudo-randomness of the LT codes.11 As
a consequence, the R10 code [4] should also be vulnerable.
Moreover, it should be easier to defeat the execution, as the
R10 overhead / failure probability curves are less robust than
the ones of RaptorQ [18]. The impact can be significant as
R10 appears in at least eleven standards (see pages 43 to 45
of [32]), covering areas related to satellite communications,
IPTV and digital video broadcasting, mobile and Internet
multicast services.

In order to address the attack, the implementations should
take that into consideration appropriate mechanisms to circum-
vent the identified limitations. In the remainder of this section,
we will propose and discuss a few solutions.

B. Removing the vulnerability

A very straight-forward way of solving the problem is for
the receiver to request from the sender (or from some other
alternative source) any missing symbols it needs, or, to ask for
more repair symbols. Obviously, this approach should only be
used sparingly, as it goes against the nature of fountain codes
and an adversary may still be able to drop the extra packets
(at the cost of losing her stealthiness). Nevertheless, it was
included in the 3GPP MBMS standard to tolerate accidental
decoding failures of R10 [6].

11With regard to the last point, there is probably nothing to be done about
this because with pure randomness it would be impossible to recover the data.

Another solution would be to use encrypted communication
and transmit the encoding symbols in a random order. An
attacker would not be able capture the information on the
OTI, and even if she managed to get the value of K, she
would not be able to apply the erasure pattern effectively (only
with a pure lucky guess). Clearly, this approach would only
be successful with encrypted channels, which could limit its
applicability.

A more elaborate solution would resort to a
cryptographically secure pseudo-random number generator
(CSPRNG) [36]. A CSPRNG produces deterministic pseudo-
random numbers from a high entropy seed, with properties
that make it appropriate for secure systems. During the
setup of the communication, the encoder and decoders would
privately agree on an initial seed for the CSPRNG (e.g., the
source could generate the seed and distribute it through a
secure channel to the recipients). Then, the source would
(1) associate to the encoding symbols pseudo-random ESIs
obtained with the CSPRNG (e.g., ISI = 0 is ESI = 5512;
ISI = 1 is ESI = 12567; etc), and it (2) would reorder
how the encoding symbols are transmitted, interleaving in
an unpredictable way the source and repair symbols. Since
the destination is able to generate the same pseudo-random
numbers, it can create the mapping between the ISIs and the
ESIs. Therefore, the decoder would know how to translate
the ESIs of the arriving symbols to the ISIs, and setup
the decoding matrix with the correct equations. Naturally,
this solution only works as long as the adversary does not
compromise a legitimate peer, from whom she could learn
the actual parameters.

Of course, the effectiveness of this technique increases
with the number of source symbols per source block, as
there are more combinations for the ordering of the packets.
Nevertheless, it should be sufficient to protect the code under
our threat model, even when communications are in the clear.
In order to compromise this solution, the adversary would
have either to discover the seed of the CSPRNG or be able to
reverse engineer the ISI-ESI mapping from the ESIs and the
data included in the packets (something not trivial to achieve,
especially with encrypted channels).

A more secure solution, but requiring more changes to the
standard, is to employ a CSPRNG to generate the ISIs that are
assigned to the source and repair symbols (e.g., ISI = 5436
is ESI = 0; ISI = 912 is ESI = 1; etc). Since the equations
used in the encoding/decoding matrix are created in accordance
with the ISI, this would make the system of linear equations
to be in part pseudo-random. As before, decoding is possible
because the receivers can rebuild the ISI-ESI mapping. The
main advantage of this solution is that it would be much harder
to discover the erasure patterns prior to the attack and reverse
engineer matrix A from the content of the packets. Moreover,
it would allow source symbols within a source block to be
identified with consecutive values, respecting the guidelines
suggested in [20].

VIII. CONCLUSIONS

The main goal of this paper is to study the effect a
malicious adversary can have on the robustness of the RaptorQ
standard. It shows that in many configurations it is possible to



break the forward error correction capabilities of RaptorQ with
a small number of selected erasures. Consequently, the code
is stopped from fulfilling its mission of providing protection
against arbitrary packet losses with high probability.

The attack requires the ability to listen and drop packets,
and it can be performed at line speed even if the commu-
nication flows are secured with IPsec. It exploits the way
the standard associates identifiers to the (source and repair)
symbols, to predict the linear equations included in the encod-
ing/decoding matrices. As long as the adversary can discover
the coefficients of the equations, she can force the injection
of linear dependencies into the system of equations, and thus
preclude the recovery of packet losses.

As explained, the attack is general and takes advantage of
the RaptorQ standard’s own design. Therefore, it should be
possible to extend the attack to any Raptor code specification
that follows a similar organization, such as the R10 code [4].
This indicates that our attack may also have practical implica-
tions in other previously standardized codes.

Some solutions were proposed to address the identified
limitations. The most interesting approach uses a CSPRNG,
and renders the attack impractical12 in our threat model, both
in encrypted channels and clear-text. A solution based on this
technique could be adopted into the standard, but also, it could
be easily integrated with any existing implementations.
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